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Role of Dilations in Diffeomorphism-Covariant
Algebraic Quantum Field Theory
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A generalization of algebraic quantum field theory on differentiable manifolds
is given in terms of nets of ∗-algebras over open sets of the manifold. The present
investigations are motivated by diffeomorphism invariance and finite localization
as they appear, e.g., in quantum gravity. A possible generalization of Haag–Kastler
axioms for differentiable manifolds is discussed and a minimal framework based
on isotony, covariance, and a state-dependent GNS construction is presented.
Possible adaptions of Haag’s commutant duality are discussed in a specific setting
of one-parameter families of finite and nondegenerate nested localization domains
of the net, with universal minimal and maximal algebras for the small and large
limits of the net, respectively. For von Neumann algebras the modular group is
discussed. The geometric interpretation of a one-parameter subgroup of outer
isomorphisms is related to dilations of the open sets of the net.

1. INTRODUCTION

The following investigations can be seen as an attempt to understand
some aspects of quantum field theory (QFT) on differentiable manifolds.
This is indeed also a very promising approach to quantum general relativity
or (loop) quantum gravity [1]. The quantum analog of general relativistic
geometry should be implementable on smooth manifolds without an a priori
metric structure, the kinematical covariance group being represented by dif-
feomorphisms. Hence it is useful to generalize the setting of algebraic quantum
(field) theory (QFT) such that it becomes a framework for local quantum
physics which can be applied also to quantum gravity.

In local quantum physics, observation procedures represent the abstract
kinematical framework for possible preparations of measurements, while the
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observables encode the kinds of questions one can ask of the physical system.
The covariance group of the observation procedures reflects a general (a
priori) redundancy of their mathematical implementation. The more sophisti-
cated is the structure of the observation procedures, the smaller the covariance
group will be in general. In a concrete observation the kinematical covariance
will be broken. So, e.g., in a treelike network of string world tubes a concrete
local observation requires the explicit selection of one of many a priori
equivalent vertices, whence it breaks the covariance which holds for the
network of vertices as a whole [2]. However, irrespective of the loss of
covariance in a concrete observation (e.g., by the particular frame attached
to the observer), the action of the covariance group may still be well defined
on the observation procedures. In any case, the loss of covariance in a concrete
observation is related to a specific structure of the state of the physical system.

Previous attempts [3, 4] to implement kinematical general covariance
and its dynamical breakdown in the spirit of an algebraic, constructive
approach [5] to quantum (field) theory have been continued recently [6–8].
The principle of locality is kept by demanding that observation procedures
correspond to possible preparations of localized measurements in bounded
regions. Note that there is no a priori notion of either a metric or a time,
nor even a causal structure. Then, on different regions there will be no a
priori causal relations between observables.

For a net of subalgebras of a Weyl algebra, it is indeed possible [9] to
work with a flexible notion of causality rather than with a rigidly given one. In
principle it might be possible to construct the net together with its underlying
manifold from a partial order via inclusion of the algebras themselves only
[10].

Nevertheless, below we start just from a net of ∗-algebras on a differenti-
able manifold. On this net, a physical state induces dynamical relations,
whence the algebra of observables is covariant just under a certain subgroup
of the general diffeomorphism group. This subgroup describes a covariance
related to the (dynamically relevant) observables. The present examinations
emphasize particular one-parameter subgroups of diffeomorphisms which
relate the members of a one-parameter family of contractable, simply con-
nected, bounded open sets nested by inclusion. We refer to such particular
diffeomorphisms as dilations. As we will see below, under some conditions
(satisfied for a typical QFT) on the type of corresponding localized algebras
(in particular, for von Neumann factors of type III1), a one-parameter family
of dilations will yield a one-parameter group of outer automorphisms on the
algebras. While on a space-time manifolds the appearance of a one-parameter
group of outer automorphisms related to time translations is to be expected,
in a diffeomorphism-invariant context it is a priori not clear what should be
the most canonical way to obtain a one-parameter foliation of a manifold
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such that its parameter is suitable as a dynamical one, i.e., as a time parameter
with the leaves as spatial slices.

Here I pursue a pragmatic local point of view motivated by the typical
situation in a cosmological observation. There a time parameter only needs
to exist locally on bounded regions of the manifold containing the observer
at a fixed point x. Observations typically take place in a bounded time interval
where each time value labels a spatial boundary given by a cosmological
horizon limiting the domain of observations. Each one-parameter foliation
between the minimal and the maximal bound provide a natural topological
cobordism. For the purpose of this paper the latter will always be trivial,
since we assume that the topology of all leaves of the foliation are localization
domains of the same structure: open, bounded, connected, simply connected,
and contractible. One might try to admit topology changes and explore corres-
ponding topological quantum field theory structures. However, we will not
follow this approach here, but rather leave it for elsewhere.

The goal here to examine the algebraic structure of a diffeomorphism-
covariant local quantum theory in the described setting where local dilations
play a distinguished role.

In the particular case where the manifold carries a Riemannian metric,
with a given fixed point x, the subsets of a Riemannian manifold defined by
constant bounds on the geodesic distance from x form such a one-parameter
family of nested sets which are mapped into each other by a constant rescalings
of the metric.

In Section 2 we review the algebraic axioms for (free) QFT on Minkow-
ski space, in particular under the aspect of their possible generalization in a
background-independent setting (in particular, without reference to any a
priori given metric) with covariance under an admissible group (in particular,
consistent with boundary conditions) of diffeomorphisms which in general
will be much larger than isometries. Looking at the GNS construction and
the covariance condition on the Gelfand ideal, one sees that the selection of
the (physical) state determines the dynamical subgroup of diffeomorphisms
which leave the Gelfand ideal invariant. This is in some analogy to the
Borchers algebra approach sketched in ref. 11.

A general framework for diffeomorphism-covariant local quantum phys-
ics is implemented in Section 3 in the form of nets of algebras localized on
nested open sets around any interior point of the manifold, covariant under
certain admissible diffeomorphisms. The generalized axioms of isotony and
covariance together with a state-dependent GNS construction form the back-
bone of this diffeomorphism-covariant setting. The causality condition can
be sharpened to Haag duality [11], which plays a key role in the DHR analysis
[12]. Haag duality is the first example of an algebraic commutant duality on
a net of von Neumann algebras. Recently [6–8] attempts were made to find
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an appropriate modification of Haag duality that can be applied in consistency
with general covariance on an arbitrarily curved background or in a metric-
independent setting.

Section 4 introduces minimal and maximal bounds on the net of (finitely)
localized algebras and discusses related parametric dilations for sets and
algebras between these bounds.

With a minimal (maximal) domain of localization 2x
smin (2x

smax) the regu-
larization can be introduced algebraically at the small (large) scale for fields
contained in the corresponding algebras of an isotonic net. At the small end
this implies that the localization of the algebras and related field will be only
finite. In particular, the fundamental constituents of the theory, rather than
being pointlike, can be extended objects localized on nondegenerate open sets.

Then, in a further step we examine some specific versions of an algebraic
commutant duality in this setting. It turns out that even a relatively mild
version restricts the algebraic structure of the net considerably and implies
characteristic features, such as a minimal Abelian center, which are absent
in the more common quantum field theories on Minkowski space. On the
other hand, it reveals a remote analogy to theories with superselection sectors.

In ref. 6 a commutant duality was implemented within the large-scale
limit n → ` of discretely parametrized domains 2n , n P N. Unlike there,
in refs. 7 and 8 a von Neumann commutant duality (52x

smin) 5 58(2x
smax) was

introduced between some minimal and some maximal algebra from a net of
von Neumann algebras on continuously parametrized bounded domains 2x

s,
smin # s # smax, around any point x.

We will see below that those earlier versions have quite fatal implications
for the related algebraic quantum (field) theory in question. In contrast to
ref. 6, it is considered here to be more natural that both 2x

smin and 2x
smax are

nonempty, bounded, open sets with boundaries given as a horizon for an
observer located outside 2x

smax (at infinity) and inside 2x
smin (at x) respectively.

Clearly, only those diffeomorphisms are admissible here which map 2x
smax

and likewise 2x
smin to itself. (Note, however, that there is a priori not necessary

that they vanish on the horizon.) Clearly, this algebraic implementation of
small- and large-scale regularization also proves particularly useful in order
not to get trapped in the usual conflict between cutoffs and covariance.

The commutant duality can also be viewed as a lift of the scale duality
between the small and the large to the algebraic level.

A consequence of the commutant duality is that separability and cyclicity
of the GNS vacuum imply each other. In Section 5 both cyclicity and separabil-
ity are needed in order to extract the modular structure from the net of von
Neumann algebras and to obtain the modular group of algebraic isomorphisms
of the net.
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Section 6 concludes with a brief discussion of some possible implications
of the proposed structure for quantum general relativity and a posteriori
notions of time and causality.

2. ALGEBRAIC AXIOMS OF QFT ON MINKOWSKI SPACE

In this section we review the algebraic axioms of usual QFT on Minkow-
ski space }. These can be formulated in terms of a net of von Neumann
algebras 5(2) on open sets 2 , } as follows.

Isotony:

21 , 22 ⇒ 5(21) , 5(22) (2.1)

Additivity:

2 5 ø
j

2j ⇒ 5(2) 5 (ø
j

5(2j))9 (2.2)

Causality:

21 ' 22 ⇒ 5(21) , 5(22)8 (2.3)

Covariance:

P { g °
∃

U(g) P U(P): 5(g)(2) 5 U(g)5(2)U(g)21 (2.4)

Spectrum Condition:

specU(t) , V +, t , P (2.5)

Vacuum Vector:

∃V P *, |V| 5 1:

(cyclic) (ø
2

5(2))V ,
dense

*

(invariant) U(g)V 5 V , g P P (2.6)

In the case of a differentiable manifold M (of arbitrary, not necessarily metric
geometry and curvature), the purely topological condition (2.1) will be kept
unmodified, an analog of condition (2.4) will be maintained when P is no
longer the Poincaré group, but the relevant covariance group consistent with
the structure of the manifold, and U(P) its strongly continuous representation
on the Hilbert space * on which the elements of the abstract (von Neumann)
algebras are represented as bounded operators.
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The existence of a cyclic vector V as in (2.6) makes sense also in a
more general setting; however, then it is in general no longer unique, but
state dependent. Its invariance under the strongly continuous action of U(P)
will survive with modified covariance group P.

Condition (2.3) requires a causal structure on the manifold and a corres-
ponding notion of a causal complement ' on its sets. However, here we do
not want to restrict M to carry a priori such a structure. Therefore, instead
of (2.3) we propose below a modified commutant duality introduced on the
boundary of the net. Similarly, the positive-energy condition (2.5), although
it might be physically very desirable, will cease to be well defined in the
general case: In general there will be no obvious analog of the forward light
cone V +. Moreover, already for a general Lorentzian manifold, the covariance
group in general need not contain an analog of the translational subgroup t
, P.

The additivity condition (2.2) can be written down also in the general
case. When we deal with von Neumann algebras, (5(2))9 is algebraically
just the weak ∗-closure of 5(2). However, the sense of this axiom is more,
namely to relate this algebraic closure to the causal closure of the sets, which
in the standard Minkowski case holds if we choose the index sets 2 of the
net to be double cones. In this case (2.2) implies the Reeh–Schlieder property,
ensuring that the vacuum vector is cyclic and separating [11]. However in
the general case without causal structure we have no notion of double cones
and it is not at all obvious that (2.2) should be imposed.

In the following section we discuss in more detail those axioms and
properties which make perfect sense on a general differentiable manifold
without any reference to a background metric or causal structure.

3. COVARIANT NETS OF ALGEBRAS

Given a differentiable manifold M (connected, orientable, Hausdorff,
and of finite dimension dim M . 2 in order to avoid pathological cases) a
collection {!(2)}2PM of ∗-algebras !(2) on bounded open sets 2 P M is
called a net of ∗-algebras iff

21 , 22 ⇒ !(21) , !(22) (3.1)

The net is sometimes also denoted by ! :5 ø2 !(2). Self-adjoint elements
of !(2) may be interpreted as possible measurements in 2.

A net of algebras on M is Diff(M )-covariant if it reflects the covariance of
the underlying manifold M under the group of its admissible diffeomorphisms
Diff(M ). Diff(M ) then acts by algebraic isomorphisms on ! :5 ø2 !(2),
i.e., each diffeomorphism x P Diff(M ) induces an algebraic isomorphism
ax such that
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ax (!(2)) 5 !(x(2)) (3.2)

Two sets 21 and 22 related by a topological isomorphism (e.g., a diffeomorph-
ism) x such that x(21) 5 22 may be identified straightforwardly only if there
are no further obstructing relations between them. A relation like 21 , 22,
in addition to the previous one, implies that 21 and 22 have to be considered
as topologically isomorphic, though nonidentical, sets. A similar situation
holds on the level of algebras. Isotony (3.1) in connection with covariance
(3.2) implies that !(21) and !(22) are isomorphic, but nonidentical algebras.
Therefore it was a misleading abuse of terminology in previous papers [7,
8] to call ax an algebraic automorphism (as, e.g., in ref. 11), although the
situation is more complicated in general. In the following, algebras related
simultaneously by isotonic inclusion and an algebraic isomorphism are more
correctly called just isomorphic rather than automorphic algebras.

The state of a physical system is mathematically described by a positive
linear functional v on !. Given the state v, one gets via the GNS construction
a representation pv of ! by a net of operator algebras on a Hilbert space
*v with a cyclic vector Vv P *v. The GNS representation (pv, *v, Vv) of
any state v has an associated folium ^v, given as the family of those states
vr :5 tr rpv which are defined by positive trace class operators r on *v.

A physical state v implicitly contains all peculiarities of the preparation
procedure (e.g., choices of the observer’s physical frame, etc.), fixing the
ensemble within which the observations of the physical system can be made.
Once v has been specified, one can consider in each algebra !(2) the
equivalence relation

A , B :⇔ v8(A 2 B) 5 0, ∀v8 P ^v (3.3)

These equivalence relations generate the two-sided Gelfand ideal

(v(2) :5 {A P !(2).v8(A) 5 0} (3.4)

in !(2). The (dynamically relevant) state-dependent algebra of observables
!v(2) :5 pv (!(2)) may be constructed from the (kinematically relevant)
algebra of observation procedures !(2) by taking the quotient

!v(2) 5 !(2)/(v(2) (3.5)

The net of state-dependent algebras then is also denoted as !v :5 ø2 !v (2).
By construction, any diffeomorphism x P Diff(M ) induces an algebraic
isomorphism ax of the observation procedures. Nevertheless, for a given
state v, the action of ax will in general not leave !v invariant. In order
to satisfy
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ax(!v(2)) 5 !v(x(2)) (3.6)

the Gelfand ideal (v(2) must transform covariantly, i.e., the diffeomorphism
x must satisfy the condition

ax((v(2)) 5 (v(x(2)) (3.7)

for some algebraic isomorphism ax. Due to nontrivial constraints (3.7), the
(dynamical) algebra of observables constructed with respect to the folium ^v

in general no longer exhibits the full Diff(M ) symmetry of the (kinematical)
observation procedures. The symmetry of the observables is dependent on
(the folium of) the state v. Therefore, the selection of a folium of states ^v,
induced by the actual choice of a state v, results immediately in a breaking
of the Diff(M ) symmetry. The diffeomorphisms which satisfy the constraint
condition (3.7) form a subgroup. This effective symmetry group is called the
dynamical group of the state v. The ax is called a dynamical isomorphism
(w.r.t. the given state v) w.r.t. x if (3.7) is satisfied.

The remaining dynamical symmetry group, depending on the folium ^v

of states related to v, has two main aspects which we have to examine in
order to specify the physically admissible states: First, it is necessary to
specify its state-dependent algebraic action on the net of observables. Second,
one has to find a geometric interpretation for the dynamical symmetry group
and its action on M.

If we consider the dynamical group as an inertial, and therefore global,
manifestation of dynamically ascertainable properties of observables, then
its (local) action should be correlated with (global) operations on the whole
net of observables. This implies that at least some of the dynamical isomor-
phisms ax are not inner. (For the case of causal nets of algebras it was actually
already shown that, under some additional assumptions, the isomorphisms
of the algebras are in general not inner [13].)

Note that one might consider instead of the net of observables !x(2)
the net of associated von Neumann algebras 5x(2), which can be defined
even for unbounded !x(2), if we take from the modulus of the von Neumann
closure (!x(2))9 all its spectral projections [3]. Then the isotony (3.1) induces
a likewise isotony of the net 5x :5 ø2 5x(2) of von Neumann algebras.

4. LOCAL DILATIONS

In the following I want to exhibit the possibility of introducing simultane-
ously regularizations of the small and of the large on a net of von Neumann
algebras supposed (unless stated otherwise) to satisfy all the axioms and
properties of the previous section. This essentially exploits a local partial
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ordering on the net, which is induced by the isotony property of the finitely
localized algebras of the net.

Let us now make use of the given (C`) topological structure of M and
choose at a given point x P M a topological basis of nonzero open sets
2x

s { x parametrized by a real parameter s with 0 , s , `, such that

s1 , s2 ⇔ cl(2x
s1) , 2x

s2 (4.1)

and

s → 0 ⇔ cl(2x
s) → {x} (4.2)

The standard inclusion 2x
s1 , 2x

s2 (used previously [7]) does not exclude the
possibility that 2x

s1ù2x
s2 Þ 0⁄ . Since, for the following, this would be slightly

pathological, condition (4.1) uses here cl(2x
s1),2x

s2 as a slightly stricter inclu-
sion instead.

Let the parameter s be restricted by 0 , smin,x , s , smax,x , `.
Exploiting local reparametrization invariance, one may assume

smin,x 5 smin, smax,x 5 smax ∀x P M (4.3)

without loss of generality. Then, for each x P M, open sets 2x
s with s P ]smin,

smax[ generate local cobordisms between 2x
smin and 2x

smax, and the isotony
property (3.1) implies that

smin , s1 , s2 , smax ⇒

5v(2x
smin) , 5v (2x

s1) , 5v(2x
s2) , 5v(2x

smax) (4.4)

Here, any diffeomorphism 2x
s1 ° 2x

s2 is a local dilation at x P M from 2x
s1

to 2x
s2. Note that all local dilations which preserve covariance of (4.4) must

leave invariant 2x
min and 2x

max.
Now, a commutant duality relation between the inductive limits given

by the minimal and maximal algebras is introduced,

5v(2x
smin) 5 (5v(2x

smax))8 (4.5)

where 58 denotes the commutant of 5 within some 5max . 5. Then the
bicommutant theorem (59 5 5) implies that likewise also

5v(2x
smax) 5 (5v(2x

smin))8 (4.6)

If one now demands that all maximal (or all minimal) algebras are isomorphic
to each other, independent of the choice of x and the open set 2x

smax (resp.
2x

smin), then by (4.5) [resp. (4.6)], also all minimal (resp. maximal) algebras
are isomorphic to each other. The isomorphism class is then an abstract
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universal minimal, resp. maximal, algebra, denoted by 5v
min and 5v

max,
respectively.

If, as in the following, the commutant is always taken within 5v
max, the

duality (4.5) implies that 5v
min is Abelian. (Note, however, that one should

also keep in mind the possibility to take the commutant w.r.t. to some larger
algebra 5v

B . 5v
max. Such a choice would possibly include further correlations

outside the observable range; it is not considered further here.)
By isotony and (4.1) together with (4.3), the mere existence of 5v

min,
resp. 5v

max, implies the existence of nontrivial sets 2x
smin, resp. 2x

smax, at any
x P M. By (4.3) we already gauged the size of all these sets to smin, resp.
smax, i.e., to a common size (as measured by the parameter s) independent
of x P M. So in this case smin and smax really denote universal small, resp.
large, scale cutoff. Note that, in the context of Section 3, the universality
assumption (4.3) is indeed nontrivial because local diffeomorphisms consis-
tent with the structure above must preserve smin, smax, and the monotony of
the ordered set ]smin, smax[. The number s P ]smin, smax[ parametrizes the
partial order of the net of algebras spanned between the inductive limits
5v

min and 5v
max.

Note that these inductive limits are, strictly speaking, not part of the
diffeomorphism-invariant net itself. In particular, the minimal Abelian center
5v

min should be exempted because otherwise, by isotony and dilation covari-
ance, all algebras would be isomorphic to the Abelian center, whence we
would deal with a classical rather than a quantum theory. By duality, then,
5v

max should likewise be exempted from the net itself.
Although in local QFT usually the support of an algebra and that of its

commutant are not at all related, it might be nevertheless instructive to
consider for the moment a net which is not necessarily covariant under
dilations (otherwise this remark would again refer only to the trivial Abelian
case), and which has the property that (sufficiently large) algebras of the
net satisfy

(5v(2x
s))8 , 5v(2x

s) (4.7)

Then, with the center of 5v(2x
s) defined as ](5v(2x

s)) :5
5v(2x

s) ù (5v(2x
s))8, one obtains for the net ](5v(2x

s)) 5 (5v(2x
s))8 5

]((5v(2x
s))8), and correspondingly for the inductive limit ](5v

max) 5 5v
min

5 ](5v
min). So, for a pair of commutant dual algebras satisfying Eq. (4.7),

the smaller one is always Abelian, namely it is the center of the bigger one.
With (4.7), the isotony of the net implies the existence of an algebra ]v

which is maximal Abelian, in other words, commutant self-dual, satisfying
]v 5 (]v)8 5 ](]v). This algebra is given explicitly via the Abelian net
of all centers, ]v :5 ø2 ](5v(2)). The algebra ]v, located on an underlying
set 2x

sz of intermediate size smin , sz , smax, separates the small Abelian
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algebras 5v(2x
s) 5 ](5v(2x

s)), with s # sz , from larger non-Abelian algebras
5v(2x

s) 5 (](5v(2x
s)))8, with s . sz.

For a net subject to (4.7), its lower end is Abelian, whence observations
on small regions with s # sz are expected to be rather classical. Nevertheless,
for increasing size s . sz , there might well exist a nontrivial quantum (field)
theory (in fact, it was shown [13] that, for causal nets, the algebras of QFT
are not Abelian and not finite-dimensional) if dilation covariance does not
hold on the whole net. However, common sense might well justify rejecting
this possibility as unphysical.

It was speculated [14] also that there might be kinetic substructure
of quantum general relativity. There may be a large, well-defined class of
elementary constituents being purely classical, thus yielding finitely localized
Abelian algebras. We note here that the Abelian algebra of free loops in
quantum general relativity provides indeed such classical constituents [1, 15].

Nevertheless, the following investigations all hold independent of rela-
tion (4.7). Indeed, we will see below that (4.7) could only make sense if we
take the commutant w.r.t. some algebra essentially larger than 5v

max.

5. MODULAR STRUCTURE AND DILATIONS

If we consider the small- and large-scale cutoffs as introduced above,
it should be clear that only regions of size s P ]smin, smax[ are admissible for
measurement. Again we consider finitely localized von Neumann algebras
which (unless stated otherwise) are supposed to satisfy all axioms and proper-
ties of Section 3. The commutant duality between 5v

min and 5v
max inevitably

yields large-scale correlations in the structure of any physical state v on any
admissible region 2x

s of measurement at x. Let us assume here that v is
properly correlated, i.e., the GNS vector Vv is already cyclic under 5v

min.
Then, by duality, it is separating for 5v

max 5 5v8
min. Furthermore, Vv is also

cyclic under 5v
max, and hence separating for 5v

min.
So Vv is a cyclic and separating vector for 5v

min and 5v
max, and by

isotony also for any local von Neumann algebra 5v(2x
s).

As a further consequence, on any region 2x
s, the Tomira operator S and

its conjugate F can be defined densely by

SAVv :5 A*Vv for A P 5v(2x
s) (5.1)

FBVv :5 B*Vv for-B P 5v(2x
s)8 (5.2)

The closed Tomita operator S has a polar decomposition

S 5 JD1/2 (5.3)

where J is antiunitary and D :5 FS is the self-adjoint, positive modular
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operator. The Tomita-Takesaki theorem [11] provides us with a one-parameter
group of state–dependent isomorphisms av

t on 5v(2x
s) defined by

av
t (A) 5 D2it A Dit for A P 5v

max (5.4)

So, as a consequence of commutant duality and isotony assumed above, we
obtain here a strongly continuous unitary implementation of the modular
group of v, which is defined by the one-parameter family of isomorphisms
(5.4), given as the conjugate action of operators e2itlnD, t P R. By (5.4), the
modular group, for a state v on the net of von Neumann algebras defined
by 5v

max, might be considered as a one-parameter subgroup of the dynamical
group. Note that, with Eq. (5.2), in general, the modular operator D is not
located on 2x

s. Therefore, in general, the modular isomorphisms (5.4) are not
inner. The modular isomorphisms are known to act as inner isomorphisms
iff the von Neumann algebra 5v(2x

s) generated by v contains only semifinite
factors (type I and II), i.e., v is a semifinite trace.

Above we considered concrete von Neumann algebras 5v(2x
s), which

are in fact operator representations of an abstract von Neumann algebra 5
on a GNS Hilbert space *v w.r.t. a faithful normal state v. In general,
different faithful normal states generate different concrete von Neumann
algebras and different modular isomorphism groups of the same abstract von
Neumann algebra.

The outer modular isomorphisms form the cohomology group Out 5
:5 Aut5/Inn5 of modular isomorphisms modulo inner modular isomor-
phisms. This group is characteristic for the types of factors contained in
the von Neumann algebra [16]. Per definition, Out5 is trivial for inner
isomorphisms. Factors of type III1 yield Out5 5 R.

In the case of thermal equilibrium states, corresponding to factors of
type III1, there is a distinguished one-parameter group of outer modular
isomorphisms which is a subgroup of the dynamical group.

For a QFT on Minkowski space this one-parameter subgroup represented
by {D2it}tPR turns out to correspond geometrically to Lorentz boosts. Similar
interpretations hold for more general (globally hyperbolic) space-times. In
our general situation possibly without metric or causal background there is
no well-defined notion of boosts. Nevertheless there still is a one-parameter
subgroup waiting for a some geometric interpretation of its parameter. Let
us recall that our partial order defined above is parametrized by open intervals
]smin, smax[ for the full net (in the case of (4.7), ]sz , smax[, dilation covariance
makes only sense when the net is restricted to the non-Abelian part). Let us
view this interval diffeomorphically as R+. This way, one may consider
dilations of the open sets 2x

s within the open interval as the geometrical
interpretation of the positive semigroup {D2it}tPR

1 contained in the one-
parameter group of outer modular isomorphisms of thermal equilibrium states.
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Though in the Minkowski case this interpretation seems to disagree with the
established geometrical interpretation as boosts rather than dilations, there
may nevertheless be a way to reconcile these two interpretations. Note that
a boost of any point in a Rindler wedge from parameter 2t to t traces out
a smooth, timelike world line (of a pointlike observer), and there is a double
cone which is the just the causal hull of this world line [see also (6.1) below].
This double cone then contains all events which can be both influenced and
registered in a measurement between 2t and t. Let now the size of the double
cone be defined as .t.. Then a boost from t1 to t2 (for 0 , .t1., .t2. , `)
along any such world line is associated with a rescaling of the double-cone
size from .t1. to .t2. by a dilation of the double cone. Also, conversely the
latter dilation defines an element of the positive semigroup of the outer one-
parameter modular group. Note also that, for double cones, the partial order
can be related to the split property of the algebras [10].

A different, but related physical interpretation of the modular group has
been given by the hypothesis [17] of a thermal time. Indeed, in usual QFT,
a local equilibrium state might be characterized as a KMS state [11, 18] over
the algebra of observables on a (suitably defined) double cone, whence the
one-parameter modular group in the KMS condition might be related to the
time evolution.

Now, the details of the isotony condition (3.1), in relation to the modular
invariance (5.4), allow us rather immediately to draw some further conclusions
which have not yet been spelled out in previous investigations [7, 8]. First
assume strict isotony, i.e.,

s1 , s2 ⇒ 5v (2x
s2),

Þ
5v(2x

s2) (5.5)

Covariance w.r.t. local dilations then implies isomorphic algebras 5v(2x
s1)

> 5v(2x
s2) for smin , s1 , s2 , smax, whence, in particular, all algebras have

the same von Neumann type. Obviously, here the condition (4.7) would lead
to a totally Abelian net if the commutant is not taken in a larger algebra
5v

B . 5v
max. Therefore (4.7) is not further considered here. With the commu-

tant duality (4.5) w.r.t. 5v
max above, 5v

min is Abelian. Hence, the net contains
non-Abelian algebras (in particular those with type III1) only if minimal and
maximal sets and algebras are excluded from the net. 5v

min and 5v
max then

only exist as inductive limits of a net of isomorphic algebras, while 2x
min,

resp. 2x
max, then are horizon-like boundaries of the open manifold supporting

the net. Here, only local regions with s P ]smin, smax[ are admissible for
measurement.

Note that in the case where the manifold carries a Lorentzian metric g,
the net must be consistent not only with local dilations of open sets, but
also with local dilations of the metric, which take the form of conformal
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transformations g(x) ° e2f(x)g(x), with smooth scale field f on M. If g is
consistent with M 5 ]smin, smax[ 3 S (e.g., by global hyperbolicity), then
consistency with covariance demands that f is homogeneous on the boundary
of the net, i.e., f(smin, y) [ f(smin) and f(smax, y) [ f(smax) for all y P S.

6. DISCUSSION

We presented a minimal setting of algebraic quantum (field) theory on
differentiable manifolds, based on a net of ∗-algebras with the axioms of
isotony, diffeomorphism covariance, and a state-dependent GNS representa-
tion. The (kinematical) covariance group acts via diffeomorphisms on the
open sets of the manifold, and via algebraic isomorphisms on the algebras.
In general, for a given state the representation of the algebra of observables
on the GNS Hilbert space needs to be covariant only under a (dynamical)
subgroup of the general diffeomorphism group.

An algebraic implementation of regularizations at the small and at the
large was introduced via universal finitely minimal and maximal algebras,
between which the finitely localized algebras of the net are spanned.

We discussed possible adaptions of Haag’s commutant duality. The
stronger version (4.7) does not make sense if the commutant for all algebras
of the net is taken w.r.t. 5v

max, whence all algebras would be Abelian. Even
if we drop (4.7), with this choice of commutant, at least 5v

min is Abelian.
An alternative possibility would be to take the commutant w.r.t. a larger

algebra 5v
B . 5v

max. Then we may obtain also non-Abelian 5v
min. This was

not followed here because it would introduce additional problems with alge-
bras outside the net which may give rise then to nontrivial superselection
structures. Nevertheless, this issue might deserve investigation elsewhere.

Rather than (4.7), only the much milder commutant duality (4.5) was
essential to establish the equivalence of the cyclic and separating properties
of the GNS vacuum.

On the basis of a cyclic and separating GNS representation, the modular
group of the net could be extracted. Assuming von Neumann algebras (with
factors) of type III1, the modular group acts as outer isomorphisms.

We indicate how dilations may be viewed in a geometric interpretation
as a positive semigroup contained in the modular group. In the case of
Minkowski-space QFT, this interpretation appears to be consistent with the
geometric interpretation of the modular group as Lorentz boosts in the Rindler
wedge. Therefore one might hope that conversely in a more general diffeom-
orphism-invariant setting the action of the modular group will hint toward
the natural choices for time and causality. Since the positive semigroup is
related to dilations and the partial order of the net, it is plausible that time
and dilations are related, too. If the state under consideration is a local
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equilibrium state, then, just as in usual Minkowski QFT a thermal time may
be obtained by the boosts of the modular group, in the more general setting
one might obtain such a notion of time from the dilations of the open sets.
For any x P M, the parameter s measures the extension of the sets 2x

s. As
accessibility regions for a local measurement in M, these sets naturally
increase with time. Hence it is natural to suggest that the parameter s might
be related to a (thermal) time t such that, for any set 2x

s, s . smin, we have
t , s within the set and t 5 s on the boundary 2x

s.
This thermal time is then related to growing nonidentical algebras of

increasing support. If covariance is kept as a condition, these algebras are
nevertheless all isomorphic. A nonisomorphic growth of algebras would
require releasing the covariance condition, and the growth of abstract (isomor-
phism classes) of algebras may be used to define an arrow of time.

For the ultralocal limit smin → 0 (corresponding to usual QFT), it is
possible to construct the causal structure for a space-time from the correspond-
ing net of operator algebras [19]. Let us consider here the (a priori given)
underlying manifold M of the net. Locally around any point x P M one may
induce open double cones as the pullback of the standard double cone which
is the conformal model of Minkowski space. These open double cones then
carry natural notions of time and causality, which are preserved under dila-
tions. Therefore it seems natural to introduce locally around any x P M a
causal structure and time by specializing the open sets to be open double
cones _x

s located at x, with timelike extension 2s between the ultimate past
event p and the ultimate future event q involved in any measurement in
_x

s at x (time s between p and x, and likewise between x and q). Since the
open double cones form a basis for the local topology of M, we might indeed
consider equivalently the net of algebras located on open sets

2x
s :5 _x

s (6.1)

Although some (moderate form of) locality might be indeed an indispensable
principle within any reasonable theory of observations, it is nevertheless an
important, but difficult question whether, and, if at all, under which consis-
tency conditions, a local notion of time and causality might be extended from
nonzero local environments of individual points to global regions. This is of
course also related to the nontrivial open question of how open neighborhoods
of different points x1 Þ x2 should be related consistently. A final answer to
these questions has not been found. At least it seems natural that, on manifolds
with no causal relations (like pure space without time), the net should satisfy
a disjoint compatibility condition,

21 ù 22 5 0⁄ ⇒ [!(21),!(22)] 5 0 (6.2)
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This condition is, e.g., also satisfied for Borchers algebras (see also Ref. 11).
Of course the inverse of (6.2) is not true in general.

In a more radical approach some of the above-mentioned difficulties
might be avoided by abandoning the notion of points of the manifold and
replacing them by more abstract algebraic concepts (which is in fact the
spirit of noncommutative geometry). Though we did not go so far here, we
nevertheless abandoned points as localization domains. We restricted the net
to finitely localized algebras and introduced the algebraic regularization of
the small and large end of the net. It is interesting to note here that loop
quantum gravity and string theory both come indeed along with basic fields
which are only only finitely localized, such as Wilson loops or fields localized
on p-branes.

Hence, our generalized framework of algebraic QFT is a useful tool in
order to compare quantum gravity with usual QFT. The algebraic approach
clarifies the analogies and peculiarities. Some of the features of our proposed
framework of diffeomorphism-invariant algebraic QFT which may appear
strange from the usual QFT point of view nevertheless appear quite naturally
for quantum gravity.
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